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INTRODUCTION

The aerospace industry has begun to incorporate optimization methods into their

design procedures in recent years. The Automated Structural Optimization System

(ASTROS), 1 is an example of an automated multidisciplinary tool to assist in the pre-

liminary design or modification of aircraft and spacecraft structures. The Air Force has

distributed ASTROS to more than 90 organizations in the aerospace community in the

last 18 months. The philosophy behind this system is to integrate proven and reliable anal-

ysis methods with numerical optimization using modern executive system and database

management concepts (Fig 1). The engineering disciplines include structural analysis,

aerodynamic loads, aeroelasticity, control response, and structural optimization.

The structural analysis, based on and highly compatible with NASTRAN, 2 uses the

finite element method to calculate: deflections and stresses from static, thermal, or gravity

loads; normal modes; and transient or frequency response due to time dependent loads

including gust loads. The air loads module, an advanced paneling method based on

USSAERO-C, 3 calculates flexible loads and determines a trimmed configuration. The

aeroelastic module employs the Doublet Lattice method 4 for subsonic unsteady aerody-

namics and the Constant Pressure method s for the supersonic regime. Flutter solutions are

found using the PK method. When response quantities in any of these disciplines are con-

strained, the sensitivity analysis calculates analytic derivatives for each active constraint.

These derivatives are fed to the optimization module which employs the Automated Design

Synthesis program s to minimize structural weight. The final design's dynamic response in

the presence of a given control system can be simulated by the control response module.

The ability to simultaneously consider multiple boundary conditions, flight conditions,

store loadings, and disciplines uniquely qualify ASTROS for structural design in a produc-
tion environment.

The structural optimization methodology in ASTROS utilizes design variable linking

and approximation concepts 7 to efficiently handle large problems. Even so, the maximum

number of design variables that can be handled effectively, is no more than a few hundred.

In the past the aircraft industry has handled thousands of variables by using optimality

criterion methods, e.g., Stress Ratio Method: however, their application in industry has

been limited to co_. _idering a single discipline at a time. i.e., stresses, or displacements, or

flutter alone. Fleury ._nd Schmit demonstrated the equivalence of optimality criterion and

mathematical programi,_ing methods, s and more recently Venkayya formulated a general-

ized optimality criteria approach for general mathematical functions. 9 Present efforts meld
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Fleury and Schmit's dual solution method and Venkayya's compound scaling algorithm in

ASTROS to handle multidisciplinary structural design with thousands of variables.

MATHEMATICAL STATEMENT OF THE DESIGN PROBLEM

The objective is to minimize the weight (or equivalently, mass)

minW(v) (1)

subject to rn normalized constraints

gj(v) < 0; j = 1,... ,m (2)
and side constraints on the n design variables, v

vL < v, < _; i = 1,... ,,. (3)

The constraint functions are formed by normalizing the response quantities, zj(v) by their

allowable values, Zb].
\

gJ=± [Zbj[ _ (4)

The finite element cross-sectional properties (areas of rods and thicknesses of membranes),
d, are controlled by the design variables, v through a linking matrix, T.

d = Tv (5)

The approximation concepts develop first order Taylor series for the constraint functions

in the reciprocal design variable space.

1

=, = ,-_ _. (6)

When a row of the linking matrix, T, in eq (5), has only one non-zero element, a single

design variable controls one or more finite elements. This physical linking can accommodate

the use of the reciprocal variables defined in eq (6). When a row of T has more :than one

non-zero element, the design variables can be interpreted as coefficients that scale some

shape function defined by a column of the linking matrix. Because this shape function

design variable may be zero, reciprocal variables cannot be used, in which case xi = vi.

After each complete analysis of the structure, an approximate sub-problem is formed

using a first order Taylor series to represent the constraint functions. For the finite elements

used in ASTROS the objective function is a non-linear but explicit function of the reciprocal
variables.

n

min W (x) = xo + x-_- (7)
=

The approximate constraints are linear in the reciprocal variables.

/_ = P,o +Ntx (8)

where Nij = _ is the gradient matrix and _oj = Ntxo . To stay within the region of
validity for the _l'aylor series, move limits are applied to the design variables

-f < x, <_ fxi (9)

where the move limit factor, f, is set to two as a default in ASTROS.
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THE DUAL PROBLEM

Optimality criterion methods are derived using the Lagrangian function which aug-

ments the objective function with a summation of terms that weight each constraint by a

Lagrangian multiplier (later referred to as a dual variable).

L(x, A) = W(x) + &tg(x) (10)

Application of the well-known Kuhn-Tucker conditions to this convex and separable ap-

proximate sub-problem results in a min-max optimization problem. The solution of this

dual problem also defines the global optimum of the original primal problem. 8

X
i=l

where x is found explicitly from the condition that OL = 0 for any given _ as

for all free xi, i.e., those not at their lower or upper bounds.

This dual problem is an unconstrained maximization problem. The approximate con-

straints are derivatives of the objective (Lagrangian) function.

OL

0)_j =_j (13)

The advantage of solving eq (11) in place of eq (7) is that the dimensionality of the

problem is reduced from n design variables to rna dual variables corresponding to only

the strictly active constraints. By definition the Lagrange multipliers are zero for inactive

constraints and positive for active constraints (g : 0). Whenever the number of positive

dual variables (active constraints) is fewer than the number of primal (design) variables,

the dual problem is more efficient to solve. One of the numeric difficulties, however, is

the problem of terminating the optimization when eq (13) is zero. Other termination

criteria (e.g.. relative change in the objective) in are often satisfied before the approximate

constraints are within a tolerance acceptable for the primal problem. Fleury and Schmit

accounted for this potential pitfall in two ways. First, their dual solver "does not seek

the maximum of the dual function along the [search] direction S, rather it is designed to

assure that either: (a) a regular Newton unit step is taken without any change in the set

of free primal variables: or (b) the move distance is selected so that the value of the dual

function increases. Second, they offer the option of reducing the size of the dual space by

using zero order approximations--side constraints on the primal variables based on the
element's stress ratio--for some stress constraints." Numeric difficulties occur less often

when there are fewer dual variables.

Another approach would be to solve the dual problem as a constrained optimization

problem in order to explicitly require the objective's derivatives not be greater than zero.

The required derivatives of the approximate constraints with respect to the dual variables
were derived in Ref 8.
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COMPOUND SCALING ALGORITHM

The approach used here for preventing constraint violoations is different: a compound

scaling algorithm 1° to guarantee the approximate constraints are satisfied. In formulating

a generalized optimality criteria Venkayya defines the target response ratio as

and a sensitivity parameter,

13i _ Zb__j (14)
zs

_ Nijzi
#iy- zj (15)

For each constraint the design vector is partitioned into groups based on the sign of the
constraint derivative.

i=1 i=1

Each partition of the design vector can be scaled by a factor, A, to be determined.

xN N N xP APx_= hj Xo , = (17)

Substituting these definitions into eq (8) yields an approximation of the target response
ratio as a function of the two scale factors.

j3y(AN, Af) _ 1 -- D_(A_ -- 1) + #uP(Af- 1) (18)

Contours of the approximate target response ratio can be plotted as a function of the two

scale factors. The desired target response lies on the contour llne for _ = 1 shown in Fig 2.

Selecting a unique pair of scale factors requires a second equation in addition to eq (18).

For reference, point S in Fig 2 represents simple scaling where the entire design vector is

scaled by a single factor. The original derivation of the scale factors in Ref 10, represented

by points A and B, assumed that scaling either partition alone would achieve the target

response. The current approach is to select the point M on the scaling line that minimizes

the distance to the current design at point O. This is the point closest to the small region

The solution for theabout point O where the Taylor series approximation is accurate.
scale factors is

-1 1

where the partial target response ratios are defined as

DN

, .2

(i9)

(20)

Two tables are used to select scale factors for multiple constraints. The Scale Factor

Table is simply formed using the scale factor for the corresponding partition of the design
vector.

A_ if#ij <0= if _,,. > o (21)
A,,. 1A_ ifpij=0
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The Scale Factor Assignment Table is formed from the sensitivity factors, except that the

total differential term is normalized by the allowable value instead of the response value.

Nijxi = #ij_jt
tij = Zb j

(22)

A scale factor is selected for each design variable according to the following three cases.

Case 1 < 0,
Case 2 _ N,j > 0,

Case 3 maxJ tij,

)t, max= i,N,,e0 (&j)
Ai rain [t

-: j,Nij#O __Xij )

if tOi(Aij -- 1) < 0
Ai = AiJ [or zj > Zbj

The above three cases replace the rules presented in Ref 10 and simplify the scale factor

selection procedure by avoiding the special cases of simple scaling and compound scaling

with a single constraint. Also, starting from a uniform design is unnecessary.

Each design cycle in ASTROS consists of a complete multidisciplinary analysis followed

by redesign based on the approximate problem. The new generalized optimality criterion

algorithm begins with a dual solution scheme to find the Lagrange Multipliers and cor-

responding primal variables, followed by iterative compound scaling until approximate
constraint violations are tolerable.

RESULTS

Three design problems with 200 to 1527 design variables were solved to compare primal

and dual solution methods for large optimization problems. Although only the second

problem is multidisciplinary, the approach is the same for all problems regardless of the

disciplines considered. Iteration history plots are shown for each example. The label

"PrimaF refers to the current algorithm in ASTROS that solves the approximate sub-

problem directly. The label "Dual" refers to the current generalized optimality criteria

being tested. Normalized CPU times for the entire execution (analyses, sensitivity, and

redesign for all iterations) are shown as a factor next to each label in the legend of each

plot.

200 Member Plane Truss

A 72 node plane truss made of two hundred steel elements subject to five loading

conditions 11 (Fig 3 and Table 1) was used to demonstrate the efficiency of a generalized

optimality criterion approach for statics. Stress and displacement limits together accounted

for 2500 applied constraints. The dual method required one fourth the computational effort

compared the primal method (Fig 4).

Intermediate Complexity Wing

The next example considered was an intermediate complexity wing. 12 The structural

model has 158 elements and 234 degrees of freedom (Fig 5). The composite cover skins

are made of graphite epoxy with the properties given in Table 2. Stress constraints were

567



imposedon all membraneelementsanddisplacementconstraints wereimposedat the tip of
the wing in the transversedirection for two independentstatic loading conditions. A flutter
speedlimit of 925knots correspondingto a flight condition of 0.8 Mach number at sealevel
was also applied, resulting in 722constraints and 350 designvariables. For comparison,
the results from Ref 12using22shapefunction variables andtwo physical designvariables
areshownaswell (Fig 6). The slightly higherweight for this casedemonstratesthe penalty
for constraining the skin thicknessesto vary quadratically with the span and the sparweb
thicknessesto vary linearly with the span. The shapefunction solution wasmore efficient
since 60 constraints were active at the optimum of the dual problem. Nevertheless,even
with an additional iteration, the dual method is twice as efficient as the primal method
when all 350 variables are considered. The improvement is less dramatic than for the
previous examplebecausethe multidisciplinary analysis (statics, modes, and flutter) is
more costly relative to the optimization.

High Altitude Long Endurance (HALE) Aircraft

The finite element model for the right wing of a HALE aircraft (Fig 7) is comprised of

a truss substructure and metallic cover skins. The mission of this 270 foot span airplane

is to patrol for several days at 150 to 250 knots at an altitude of 65,000 feet. Since the

ASTROS steady and unsteady aerodynamics models were not yet complete, three static

loads were applied to an aluminum version of this wing. Stresses and wing-tip deflections

were constrained, producing a total of 6124 constraints (Table 3). All 1527 elements

were designed independently. The primal method could not be solved within the memory

available to ASTROS, so a Fully Stressed Design (FSD) method was used as the basis for

comparison (Fig 8). A design with deflection constraints alone was one order of magnitude

more costly than the FSD due to the sensitivity analysis (optimization was negligible). A

weight penalty was incurred, of course when designing for the stress constraints as well.

CONCLUSIONS

A generalized optimality criterion methodc0nslstlng of a dual problem solver combined

with a compound scaling algorithm has been implemented in the multidisciplinary design
tool, ASTROS. This method enables, for the first time in a production design tool, the

determination of a minimum weight design using thousands of independent structural

design variables while simultaneously considering constraints on response quantities in

several disciplines. Even for moderately large examples, the computational efficiency is

improved significantly relative to the conventional approach.
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Steel

Modulus of Elasticity

Weight Density

Stress Limits

Lower Limit on rod areas

Displacement Limits on all nodes
(horizontal and vertical directions)

Number of Loadin 8 Conditions

E = 30 x 106 psi

0.283 lb / cu in

30,000 psi

Loading Condition 1

Loading Condition 2

Loading Condition 3

0.1 sq in

0.5 in

5

1000 lb acting in +X direction at nodes
1, 6, 15, 20, 29, 34, 43, 48, 57, 62, 71

1000 lb acting in -X direction at nodes
5, 14, 19, 20, 28, 33, 42, 47, 56, 61, 70, 75

10,000 lb acting in -Y direction at nodes
1,2,3,4,5,6,8,10, 12, 14, 15, 16, 17, 18, 19,
20, 22, 24 ..... 71, 72, 73, 74, 75

Loading Condition 4 Loading Conditions 1 and 2 together

Loading Condition 5 Loadin_ Conditions 2 and 3 to_ether

Table 1:200 Member Plane Truss Design Conditions
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Isotropic Material

Modulus of Elasticity

Poisson' s Ratio

Weight Density

Tensile Stress Limit

Compressive Stress Limit
Shear Stress Limit

Lower Limit on Thickness

Orthotropic Material
Modulus of Elasticity

Poisson's Ratio

Weight Density

Stress Limits

Lower Limit on Plies

Limit on Transverse Tip
Displacements

Flutter Speed Limit

Aluminum

E = 30 x 106 psi

0.30

0.10 lb / cu in

55,000 psi
55,000 psi
45,000 psi

0.04 in

Graphite Epoxy
E1 = 18.5 x 106, G12 = 0.65 x 106

E2 = 1.6 x 106 psi

0.25

0.055 lb / cu in

115,000 psi

0.00525 in
i

10.0 in

925 knots

Table 2: Intermediate Complexity Wing Design Conditions

Material

Modulus of Elasticity

Weight Density

Poisson's Ratio

Stress Limits

Aluminum

E = 10.5 x 106 psi

0.10 lb / cu in

0.30

60,000 psi

Lower Limit on Thicknesses

Lower Limit on rod areas

0.021 in

0.10 sq in

Limits on Transverse Tip 200.0 in

Displacements

Number of Loadin_ Conditions 4

Table 3: HALE Design Conditions
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No. of Nodes No. of Elements No. of DOF's

88 39 Rods 294 Constrained

55 Shear Panels 234 Unconstrained
62 Quadrilateral Membrane 528 Total

Triangular Membrane
158 Total

Figure 5: Intermediate Complexity Wing Model

Intermediate Complexity Wing
(strength & flutter: 350 DV)

Primal--1.0

_____._"_ Dual--0.50

40

30

1 3 5 7 9

Number of Analyses

Figure 6: Intermediate Complexity Wing Iteration History
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High Altitude Long Endurance
Aircraft Wing

Figure 7: HALE Aircraft Wing Model

High Altitude=Long Endurance (HALE)
(Aluminum: 1527 DV)
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_ _
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1500 ] _ :-

500 . , . , • , • , . ,

1 3 5 7 9 11

Number of Analyses

w

Figure 8: _: Iteration HistoryHALE
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